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Speaker motors and passive crossover filters 
A study of the performance of loudspeakers in the presence of other reactive components 

 

 

Linear motor technology is most often used in loudspeaker manufacture, and these 

devices are reactive in nature.  They are usually primarily resistive, but are just as often 

highly inductive and sometimes primarily inductive.  And whether or not a motor has 

more inductive reactance or resistance, it will always exhibit a mechanical resonant 

frequency, which causes it to act as though a tuned circuit were in series with the voice 

coil.  Further, the cabinet in which the device is mounted imparts its own reactive 

characteristics, and all of these form the nature of a speaker motor’s reactive load. 

 

Most speakers used for high fidelity purpose split the audio band into more than one 

region.  This requires a series of filters to split the band, and the filter is often one using 

passive reactive devices connected in line with the speaker circuit.  The low impedance 

nature of the linear motor requires that filter devices also be of relatively low impedance, 

so interaction between reactive components is quite high.  This document is a study into 

the interrelationship between each of these components, and of the loudspeakers 

themselves. 

 

Particular attention is paid to high performance two-way loudspeakers.  These typically 

contain very high power woofers in bass reflex or bass horn cabinets, but they cannot 

generate as much output as their high frequency counterparts.  This means that high 

power compression tweeters must be padded somewhat to match the sensitivities of the 

subsystems.  In systems of this type, tweeters are usually from 10dB to 15dB louder and 

they also usually begin to rolloff below 20kHz.  So the proposed crossover not only splits 

the frequency band between the woofer and tweeter, but it also acts to match sensitivity 

of the two subsystems.  And since horns create additional resonances, the crossover must 

damp those as well. 

 

First, we’ll examine a few speaker motors using electrical analysis to determine their 

impedance curves.  Then we’ll examine proposed crossover networks and filters, and 

how the parts of the system interact.  The software analysis tool, Spice, will be used to 

calculate impedance curves for each part of this study and Spice models used will be 

shown accompanying each graph. 
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Idealized speaker motor 

 

The idealized speaker motor has a fixed resistance value for its impedance, often 8 ohms.  

Most don’t use this simple a value in their models, but another common simplified motor 

is one having about 75% resistance and about 25% reactive impedance.  So an idealized 

tweeter might be one having 6  resistance and 0.1mH inductance and a woofer might 

have 6 ohms and 0.3mH to 0.5mH. 

 

 
 

Idealized Speaker Motor 

 

Here is the idealized speaker motor, having 6  resistance and 0.1mH inductance.  This 

is appropriate for some tweeter devices. 
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Idealized midbass or small woofer 

 

This is also a simplified motor, having Re=6 and Le=0.3mH 
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Idealized woofer 

 

Re=6, Le=0.5mH 
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Idealized high power woofer 

 

Notice the X-axis has shifted, and 5kHz is now top of scale.  This woofer has Re=6  and 

Le=1.5mH 
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Now let’s look at more realistic devices.  Specifically, we will look at the Eminence 

Alpha 8, Alpha 12, Delta 12LF, Delta 15, JBL 2226, JBL 2426 on a 2370 horn flare, 

Eminence MD2001 on a Peavey CH-3 and Eminence PSD2002 on the H290 horn flare. 

 

 
 

Eminence Alpha 8 

 

Spice model: 

 

! woofer virtual circuit (Eminence Alpha 8) 

! voice coil reactance 

  R3          6        7        5.27 

  L3          7        9        0.65mH 

! mechanical reactance (76Hz, Qms=4.5) 

 C5           9        0        210uF 

 L5           9        0        21mH 

 R5           9        0        45 
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Eminence Alpha 12 

 

Spice model: 

 

! woofer virtual circuit (Eminence Alpha 12) 

! voice coil reactance 

  R3          6        7        6.30 

  L3          7        9        0.79mH 

! mechanical reactance (49Hz, Qms=6.53) 

 C5           9        0        320uF 

 L5           9        0        32mH 

 R5           9        0        65.3 
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Eminence Delta 12LF 

 

Spice model: 

 

! woofer virtual circuit (Eminence Delta 12LF) 

! voice coil reactance 

  R3          6        7        6.06 

  L3          7        9        1.45mH 

! mechanical reactance (45Hz, Q=7.28) 

 C5           9        0        350uF 

 L5           9        0        35mH 

 R5           9        0        72.8 
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Eminence Delta 15 

 

Spice model: 

 

! woofer virtual circuit (Eminence Delta 15) 

! voice coil reactance 

  R3          6        7        6.9 

  L3          7        9        0.86mH 

! mechanical reactance (40Hz, Q=6.56) 

 C5           9        0        400uF 

 L5           9        0        40mH 

 R5           9        0        65.6 
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JBL 2226 

 

Spice model: 

 

! woofer virtual circuit (JBL 2226) 

! voice coil reactance 

  R3          6        7        5.0 

  L3          7        9        1.75mH 

! mechanical reactance (40Hz, Q=5.0) 

  C5          9        0        400uF 

  L5          9        0        40mH 

  R5          9        0        50 
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JBL 2426 on 2370 horn flare 

 

Spice model: 

 

! tweeter virtual circuit (JBL 2426) 

! voice coil reactance 

  R4          6        10       3.3 

  L4          10       11       0.1mH 

! mechanical reactance (on 2370) 

  C6          11       12       30uF 

  L6          11       12       3mH 

  R6          11       12       100 

  C7          12       13       15uF 

  L7          12       13       1.5mH 

  R7          12       13       100 

  C8          13       0        7.5uF 

  L8          13       0        0.75mH 

  R8          13       0        100 

  R9          11       0        20 

  C9          11       0        80uF 
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MD2001 on CH-3 horn flare 

 

Spice model: 

 

! tweeter virtual circuit (Eminence MD2001) 

! voice coil reactance 

  R4          6        10       6.6 

  L4          10       11       0.1mH 

! mechanical reactance (on Peavey CH-3) 

  C6          11       12       25uF 

  L6          11       12       2.5mH 

  R6          11       12       100 

  C7          12       13       12.5uF 

  L7          12       13       1.25mH 

  R7          12       13       100 

  C8          13       0        6.25uF 

  L8          13       0        0.625mH 

  R8          13       0        100 

  R9          11       0        20 

  C9          11       0        66uF 
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PSD2002 on H290 horn flare 
 

Spice model: 

 

! tweeter virtual circuit (Eminence PSD2002) 

! voice coil reactance 

  R4          6        10       6.6 

  L4          10       11       0.1mH 

! mechanical reactance (on H290) 

  C6          11       12       20uF 

  L6          11       12       2mH 

  R6          11       12       100 

  C7          12       13       10uF 

  L7          12       13       1mH 

  R7          12       13       100 

  C8          13       0        5uF 

  L8          13       0        0.5mH 

  R8          13       0        100 

  R9          11       0        20 

  C9          11       0        50uF 
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A few things about these motor impedance curves are immediately evident: 

 

1. The “idealized motor” is purely resistive, but this is not the case in real-world 

components. 

2. Woofers with lower values of voice coil inductance (Le) have less increase of 

impedance at high frequencies than those with higher inductance values. 

3. Tweeters on horn flares have relatively small voice coil inductance and their 

impedance is low at upper frequencies, but they have large impedance peaks at 

the beginning of their useable range and several subsequent lesser peaks at higher 

frequencies. 

 

Now, let’s examine some crossover networks, starting with the most simple first order 

network. 

 

 
 

1.6kHz first order crossover 

 

This one is just a 16μF capacitor and a 0.6mH coil.  The chart above shows this circuit 

driving simplified 6  and 0.1mH loads, which are almost purely resistive. 
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Now let’s try this with a couple of real speakers.  Perhaps the Eminence Delta 15 and the 

PSD2002 on an H290 horn flare. 

 

First, let’s examine a traditional first order crossover. 

 

 
 

Delta 15 and PSD2002 using simple first order network 
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The model for the first order network and the drivers follows: 

 

! First order network 

  L2          5        6        0.6mH 

  C2          5        1        16uF 

! woofer virtual circuit (Eminence Delta 15) 

! voice coil reactance 

  R3          6        7        6.9 

  L3          7        9        0.86mH 

! mechanical reactance (40Hz, Q=6.56) 

  C5          9        0        400uF 

  L5          9        0        40mH 

  R5          9        0        65.6 

! tweeter virtual circuit (Eminence PSD2002) 

! voice coil reactance 

  R4          1        10       6.6 

  L4          10       11       0.1mH 

! mechanical reactance (on H290) 

  C6          11       12       20uF 

  L6          11       12       2mH 

  R6          11       12       100 

  C7          12       13       10uF 

  L7          12       13       1mH 

  R7          12       13       100 

  C8          13       0        5uF 

  L8          13       0        0.5mH 

  R8          13       0        100 

  R9          11       0        20 

  C9          11       0        50uF 

 

The input to this circuit is across nodes 5 and 0, the woofer output is across nodes 6 and 0 

and the tweeter output is across nodes 1 and 0.  These points are used throughout this 

document, and the graphed curves represent the signal at the woofer (node 6) and the 

tweeter (node 1). 
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Now let’s examine the phase relationship of the drivers in this circuit.  Obviously, this is 

the phase of each driver at its diaphragm, and physical movement in 3D space will 

generate a fixed delay that should be added to the moving delay from the phase difference 

to determine the overall driver interaction at a given location in the listening space. 

 

But here’s the phase, as measured at each voice coil: 

 

 
 

Phase response of first order network 

 

As expected, this is a good phase curve.  Through the passband of each device, phase 

shift is less than 45 degrees.  In fact, it can be seen that the woofer’s crossover coil has 

very little effect. 
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Problem issues to solve with first order crossover filter design: 

 

1. The compression horn has an impedance peak around 1kHz.  The peak is caused 

by horn and diaphragm resonance, and the reactive filter components used in the 

circuit interact with it. 

2. PSD2002 tweeter is 9dB louder than the Delta 15.  It must be attenuated and this 

crossover network has no provision for compensation. 

3. The tweeter has significant rolloff in the top octave.  Combining this with 

problem issue number 2, attenuation may be removed in the top octave to extend 

response in this region. 

4. Because of woofer inductance, electronic rolloff never exceeds 4dB.  Woofer 

attenuation is 4dB at 2kHz, but it does not ever rolloff any more than that.  Since 

the Delta 15 woofer generates substantial output well beyond 2kHz, this 4dB 

attenuation is insufficient. 

 

So let’s address these problems one at a time. 

 

The resonant peak of the tweeter is causing an anomaly, and while we cannot correct it 

fully with a single tank circuit, we can correct at least the fundamental found at the horn’s 

cutoff frequency. 

 

The formulas that describe a tank circuit to provide resonance smoothing are: 

 

Re)(2

1

QesF
Ct


  

F

Qes
Lt

2

Re
  

Rt = 
Qms

Qes Re
Re  

 

Where Ct, Lt and Rt are series reactance values forming a tank circuit placed in parallel 

with the linear motor.  The motor’s Qes, Qms and Re values are used to calculate, along 

with its Fts value, which is shown in these formulas simply as “F”. 
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The resonator is added by putting this in the circuit: 

 

! Resonance compensator for tweeter 

  C13         1        15       43uF 

  L13         15       16       4.3mH 

  R13         16       0        12 

 

 
 

Delta15 and PSD2002 with first order crossover and electrical resonator 

 

The resonator, also called a notch filter or “tank” circuit, is formed of three components, 

Ct, Lt and Rt.  These form a conjugate to the first resonance of the horn.  The components 

are connected in series and then the entire network is placed across the driver.  In a horn 

system, there are a multiplicity of impedance peaks.  This circuit only acts as conjugate 

for the first peak, but the others are less in intensity in this case and probably can be 

ignored. 
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So let’s examine the phase now that we’ve put this resonator into the system. 

 

 
 

Phase response of first order network with resonator 

 

This phase curve is evidence that the tweeter filter is working more effectively.  We still 

see the tweeter being shifted less than 45 degrees in its passband and between 45 degrees 

and the asymptote of 90 degrees in the stopband.  This curve indicates that the filter is 

working very well. 
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So now let’s attenuate the tweeter.  First, let’s examine our chart of resistor attenuators 

for 8  loads:  We want –10dB attenuation. 

 

Decibel attenuation     % power     Resistance in ohms 

      0dB                         100%                            0  

  -2.4dB                          58%                          2.5  

  -4.2dB                          38%                          5.0  

  -5.4dB                          27%                          7.5  

  -7.0dB                          20%                           10  

  -9.2dB                          12%                           15  

-12.3dB                          5.9%                          25  

-14.4dB                          3.6%                          34  

-15.1dB                          3.1%                          38  

-17.2dB                          1.9%                          50  

 

 
 

Delta 15 and PSD2002 with first order crossover and compensation network 
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Since we want 10dB attenuation, we chose a 15  resistor for this application.  A 0.47μF 

capacitor is approximately equal to this value at 20kHz, so it will partially bypass the 

resistor through the top octave.  The 0.47μF capacitor is the best choice for a single-part 

bypass of attenuator values between 30  and 50 , but it becomes more appropriate to 

choose a larger value when resistance drops below 30  because capacitive reactance is 

34  at 10kHz.  Still, it performs adequately. 

 

The preceding graph shows the system run 

with 15  and 0.47μF and the Spice 

representation of this circuit is as follows: 

 

! series Compensation components 

  R1          3        1        15 

  C1          3        1        0.47uF 

 

Phase of this circuit: 

 

 
 

Phase response of first order network with compensation 

 

You can see that phase rises to about 45 degrees through the compensated augmentation 

region – the top octave. 
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The response and phase curves for the tweeter circuit are good.  The peaks at the tweeters 

lowest octaves aren’t troublesome at all; however, the combined actions of the filters 

have not provided high enough cutoff frequency.  The tweeter is receiving almost full 

power at a relatively low frequency of approximately 500Hz.  Since our expected 

frequency is 1.6kHz, this is over an octave lower than we expected.  This combined with 

the fact that the woofer is unattenuated means that we will have a lot of overlap from 

500Hz to woofer cutoff.  Loudspeaker output would be quite high and phase interactions, 

while minimized because of the moderate phase characteristics of low order network, will 

still be possible for several octaves.  The point is that we will have overlap for several 

octaves. 

 

Part of this may be that we used 6 ohms for our original calculation, which indicated 

16μF as an appropriate crossover component.  But using 6  instead of 8  does not 

explain such a shift in expected performance.  The biggest reason the crossover point is 

so much lower than expected is that attenuation resistance has significantly lowered it.  

Certainly, if we had calculated using too little load impedance, we would crossover 

higher than expected.  But we also would have seen this earlier when we had no 

compensation installed.  The primary reason that our crossover point has shifted is that 

we have installed this type of compensation network on a first order network without 

taking consideration of the impedance rise of the load when selecting our crossover 

capacitor. 

 

This shows us how the compensation circuit reacts in a first order network to lower the 

crossover point, possibly lower than is safe for the tweeter.  The capacitor value was 

calculated using standard capacitive reactance formula for Xc=6  and F=1600Hz.  But 

with the attenuator resistor, it is more appropriate to calculate using 20 , which is closer 

to the load the capacitor “sees”.  This would suggest that a 5μF capacitor be used for 

crossover rather than the 16μF capacitor originally chosen, and it is much closer to the 

value predicted using a “load normalized” method. 
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Delta 15 and PSD2002 with “normalized” first order network and compensation 

 

This is an example using a 5μF crossover capacitor, which is more appropriate for a first 

order network containing a 15  series attenuator.  This particular configuration has lost 

the benefit of peaking offered by the interaction of the larger crossover capacitor and the 

tweeter, but it does remove signal components below the crossover frequency.  Other 

than that, our entire filter network operates as expected using load normalized Xc = 20  

to calculate the appropriate value of crossover capacitance. 

  

The tweeter circuit is optimal for this particular loudspeaker. 
 

To digress for a moment, let’s look at the performance of the series compensation circuit 

when the resonator is removed.  As long as a resonator is employed to damp all unwanted 

resonant peaks, the series attenuator arrangement is appropriate.  But it is important to 

demonstrate that as series attenuation is raised, the filter grows increasingly underdamped 

at each resonant mode of the system when no shunt components are installed. 
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So let’s re-examine the first order network without a conjugate resonator for the tweeter. 

 

 
 

PSD2002 using 16μF first order crossover capacitor only 

 

This graph shows the signal distributed to a PSD2002, using only a 16μF capacitor in 

series.  There are no compensation components in this circuit, whatsoever. 

 

The woofer circuit’s response curve has been removed from this graph. 

 

Notice in particular that the tweeter has a 4dB peak at 

about 400Hz, a 1dB peak at 1100Hz and 0.5dB peak at 

2200Hz.  At 400Hz, the output of the tweeter should be 

down –12dB, and you can see from the response curve that 

it would have been if the tweeter and crossover capacitor 

weren’t resonating at 400Hz.  So because of resonance, 

there is as much energy at 400Hz as there is at 1.6kHz.  

This phenomenon is known as peaking. 

 

Something worth noting is that a single capacitor in series with the tweeter has 

created this 4dB anomaly.  Users of biamplified tweeters should be cautioned that a 

protective series capacitor in line will do this.  So choose your protective capacitance 

values with care. 
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Now, let’s add a very small attenuator to the tweeter circuit – just as a demonstration.  

We will add top-octave augmentation using a bypass capacitor so that the compensation 

circuit retains the same form for comparison.  But we will limit attenuation to a very 

small 3  resistance to attenuate the tweeter circuit only 3dB.  We will then raise this 

amount gradually, so we can see the effects of tweeter/crossover peaking. 

 

 
 

PSD2002 with first order crossover and 3dB attenuation without resonator 

 

Notice that attenuation is approximately 3dB, and the peaks at 400Hz, 1100Hz and 

2200Hz are no greater than the uncompensated system.  In fact, the tip of the 4dB peak is 

a little lower than it was in the uncompensated system.  But the important feature is 

performance relative to baseline – which in this case is –3dB.  And from this perspective, 

the peak at 400Hz is only attenuated 1dB.  That’s not good, 

since this frequency is two octaves below cutoff – and our 

expectation is that 400Hz be attenuated 12dB. 
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Now, let’s examine the system at 6dB attenuation using an 8  resistor. 

 

 
 

PSD2002 with first order crossover and 6dB attenuation without resonator 

 

With this circuit, attenuation is approximately 6dB, and the peaks at 400Hz, 1100Hz and 

2200Hz are still no greater than the uncompensated system.  But these peaks are also not 

significantly less than the uncompensated even though the baseline has shifted down 

6dB.  So by comparison with the tweeter’s unity reference level, the peak at 400Hz is 

actually 2dB higher.  This isn’t a terribly offensive anomaly, and is in fact, difficult to 

hear.  But as you can clearly see, it produces a measurable effect. 
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Here’s the system with 12dB attenuation using a 25  resistor. 

 

 
 

PSD2002 with first order crossover and 12dB attenuation without resonator 

 

 

Since the unity level is now 98dB, it is disturbing that output in the lower midrange – 

below expected cutoff - is 103dB.  At this point, we begin to notice the tweeter having 

abnormally high output in the lower midrange.  The listener of a system using this 

network will not really notice the tweeter sounding “louder” than 98dB, but it will begin 

to sound noticeably different than another system with a tweeter not having this peak. 
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Now, let’s look at the system at 18dB attenuation, using a 50  resistor. 

 

 
 

PSD2002 with first order crossover and 18dB attenuation without resonator 
 

At this point, output is unmistakably anomalous.  The most pronounced peaking occurs at 

400Hz, and is 8dB above the baseline.  A tweeter using this filter configuration will 

sound as though it were attenuated much less than 18dB, since lower midrange is only 

attenuated 10dB.  Also, even if the tweeter was completely incapable of sound output at 

400Hz, peaking at 1100Hz raises output nearly 2dB.  And for this particular tweeter – the 

PSD2002 – output at 400Hz is about 90dB@1W/1M, so this 400Hz peak is clearly 

noticeable. 

 

This particular filter configuration is dangerous 

for the tweeter because of high power, low 

frequency content.  It also generates a pretty 

serious anomaly that is easily resolved with the 

addition of an electronic resonator. 
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Here is the same network, including the resonator for the tweeter circuit. 

 

 
 

PSD2002 with first order crossover and 18dB attenuation WITH resonator 

 

This is an optimally configured series compensation circuit for the PSD2002.  The 

crossover frequency is a bit low, but the filter curve is exactly what we want.  Peaking is 

set very well with this circuit so that response is reasonably flat for several octaves from a 

few hundred Hertz to 4kHz, where it begins to rise at approximately 6dB/octave.  And 

the crossover frequency can be set higher quite easily, by choosing a different value 

crossover capacitor. 

 

But while the resonator corrected the primary peak, it 

does nothing to affect the circuit to reduce the second 

or third peak.  These cause a couple of 2dB anomalies 

around 1100Hz, and some smaller issues around 

2200Hz.  And the attenuation of this circuit is 

excessive for use with the Delta 15 – it was just done 

to demonstrate peaking with different values. 

 

So we might want to take a moment to examine our other options.  There is another way 

to correct tweeter resonance anomalies, and it does not require dependence upon 

electrical resonators. 
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We can use another form of compensation network and remove our resonator.  Let’s 

install a series resistance and a parallel resistance to provide attenuation.  The voltage 

divider then becomes fundamentally between the two fixed resistors instead of being 

between the single series attenuator and the tweeter.  

 

So to effect the same 10dB attenuation, we might choose to replace the single series 15  

resistor with a series/parallel divider network of 5.5  and 3.7 . 

 

 
 

Delta 15 and PSD2002 with 10dB series/parallel attenuation for the tweeter 

 

This provides excellent damping for the tweeter, removing the peaking effect at the 

tweeter horn’s resonant frequency without using an electronic resonator.  This form of 

series/parallel compensation network is 

known as a resistor damped compensation 

network. 

 

! First order network 

  L2          5        6        0.6mH 

  C2          5        3        16uF 

! series/parallel Compensation components 

  R1          3        1        5.5 

  R12        1        0        3.7 
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Now let’s examine the phase of this filter topology: 

 

 
 

Phase response of first order network with series/parallel attenuation 

 

A very similar phase curve to the previous network containing a resonator.  This indicates 

that the damping provided by the resistor-damped attenuator performs similarly to the 

undamped filter having a resonator.  Two very different approaches with similar results. 
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Now let’s add compensation for the top octave, installing a 5μF capacitor across the 5.5 

resistor. 

 

 
 

Delta 15 and PSD2002 with compensation network 

 

This is a good curve for the tweeter circuit, and one that offers substantial performance 

benefits compared with an uncompensated design.  It also benefits from the fact that there 

is no tank circuit across the tweeter to “tame” its impedance peak at horn cutoff – instead 

the reactance of the tweeter horn system is damped by the compensation components. But 

it does suffer from being about 3dB lower than desired at the crossover frequency, and is 

in effect, overdamped there. 

 

The Spice circuit is as follows: 

 

! First order network 

  L2          5        6        0.6mH 

  C2          5        3        16uF 

! series/parallel Compensation components 

  R1          3        1        5.5 

  R12        1        0        3.7 

  C1          3        1        5uF 
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Phase response of first order network with series/parallel compensation 

 

Notice that the resistor damped compensation network keeps tweeter phase near to 45 

degrees through its passband, just like the series compensator did.  Phase of the resistor-

damped network tends to fall at the very top frequencies, and is 30 degrees at 20kHz. 

 

The series compensation network provided some peaking from the reactive components 

that resonated at cutoff.  It had both resonant systems that peaked at horn cutoff and those 

that damped them, similar to the way a bass reflex system works using two resonators at 

close frequency.   

 

But this solution is more like an acoustic suspension system having static damping.  It is 

damped over a broader range of frequencies, and cannot be used for controlled peaking, 

so the entire bottom region of the response curve is damped. 

 

At 10kHz, the curve is up about 3dB over unity but by 20kHz it is only up about 6dB 

over unity.  So this design could be improved slightly, by removing some damping and 

allowing a small amount of peaking to occur. 
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Also, the Delta 15 produces significant output above the expected crossover frequency.  

We need to reduce the energy developed 

across the woofer, and this may be 

accomplished using an RC damper for the 

woofer. 

 

The formula for calculating an optimal RC 

damper is: 

 

Cz = Le/Re2 or 18μF 

Rz = 1.25Re or 8.625  

 

So let’s insert an RC damper and investigate system performance. 

 

 
 

Delta 15 and PSD2002 with compensation network and RC damper 

 

This is a completed design, optimized as much as is possible for a first order 

crossover.  It may look like it is designed for 5kHz crossover, but this just happens to 

be where the lines cross.  Remember that the PSD2002 is 9dB louder than the Delta 

15, and the green line representing the tweeter curve is then shifted upward by 9dB.  

The woofer (in its cabinet), tweeter and this crossover response curve should be 

algebraically summed to graph the system response curve. 
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Let’s examine phase of this optimized first order filter: 

 

 
 

Phase response of first order network with compensation and RC damper 

 

Woofer phase clearly shows that it is now acting as expected, with phase around 45 

degrees at crossover and approaching 90 degrees at its asymptote (maximum into the 

stopband). 

 

This is a fully optimized first order network.  It appears that the series 

compensation network and the resistor-damped network each provide equivalent 

performance, but the series offers a little better peaking, or the so-called “step” 

response.  That is attractive, since what we really want is a flat curve from 1.6kHz to 

4kHz, and then a gradual rise after that.  But the resistor-damped configuration is 

attractive because no additional reactive components are required. 
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An RC damper or “Zobel” is great for offsetting reactance issues from rising impedance 

in the upper bounds of a driver’s response curve.  And a tank circuit equivalent to the 

motors resonant characteristics is great for removing the “Zmax” impedance peak at 

resonance. 

 

But problems arise with these types of corrective filters. 

 

1. The rising impedance of the tweeter is not important to the discussion, so an RC 

damper is really only an attractive possibility for the woofer. 

2. The proper implementation of an RC damper for a woofer requires the use of 

physically large devices. 

3. Proper implementation of an electronic damping resonator for impedance 

correction of the woofer’s “Zmax” impedance peak also requires the use of 

physically large devices. 

4. The resonant frequency of a bass subsystem is affected by its cabinet.  If the 

system is acoustic suspension, then resonance is shifted upward by a predictable 

amount.  In this situation, an electronic resonator is most appropriate as an 

impedance compensating tank circuit.  But in a bass reflex cabinet, there are two 

impedance peaks and, while predictable, implementation of two tank circuits is 

less attractive.  And in a bass horn, there are multiple peaks making the choice of 

a tank circuit or a system of tank circuits rather unattractive. 

5. This situation is similar for the tweeter horn.  A single tank circuit cannot reliably 

correct its impedance in the crossover region, because there is a multiplicity of 

impedance peaks in this region.  The tweeter diaphragm and at least two horn-

induced events are participating in the HF horn’s impedance in the crossover 

region.  This is true even for systems tuned over one full octave above horn cutoff, 

and two full octaves above motor cutoff. 

 

A few conclusions are then evident: 

 

1. An RC damper may be productive for correction of the woofer’s upper frequency 

impedance rise, but it cannot be considered useful for correction of the impedance 

peak at resonance. 

2. The “Zmax” peak at resonance of a woofer is too low to negatively affect a 

crossover filter configured to be active five octaves later. 

3. An electronic resonator is not attractive for correction of bass reflex or bass horn 

impedance peaks at resonance because there is more than one resonant peak.  A 

damping resistor might be considered instead.  

4. The impedance rise of a tweeter is at too high a frequency to negatively affect a 

crossover filter configured to be active several octaves earlier. 

5. The RC damper is not attractive for correction of a tweeter’s impedance rise at 

higher frequencies, because the damper may attenuate the tweeter in the top 

octave.  The impedance rise of the tweeter does not affect performance of the 

crossover filter, so the damper has no effect anyway. 
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6. A resonator is not attractive for correction of a horn tweeter’s multiple impedance 

peaks near the crossover frequency.  For this option to be realistically considered, 

no fewer than three tank circuits would need to be employed.  Damping resistance 

is preferred instead. 

 

As an aside, when using a woofer having high voice coil inductance and reduced output 

at upper frequencies near cutoff, the uncompensated curve shown in all previous response 

curves is optimal.  In this configuration, the inductor used as a woofer “crossover” filter 

does not act as a filter at all, because woofer impedance rises exactly as the filter does.  

When woofer inductive reactance nears that of the filter coil chosen, the crossover coil 

should be considered a “Pseudo First-Order” even if the value chosen appears to be 

appropriate.   

 

The JBL 2226 can be used for such an implementation.  One look at the response curve 

of a JBL 2226 shows that it generates very little output above 1.6kHz, and the speaker 

sounds clean up through the midrange.  So a tweeter circuit that is designed to bring it 

online between 1kHz and 2.0kHz blends very well with these woofers – even with no 

woofer crossover at all.  However, it is also evident that there is a slight increase in 

output just below upper cutoff, and this is reduced by adding inductance to the system. 

 

Such a system is called a “Pseudo First-Order” filter, because output is reduced above a 

certain frequency, but it does not provide a 6dB/octave slope like one might expect when 

examining the schematic diagram.  Maximum attenuation is limited to less than 6dB, and 

is often much less – depending on components chosen. 

 

But in the case of the Delta 15 – which has cone flex resonances at fairly high 

frequencies – it is desirable to rolloff HF energies sent to the driver.  We must either use 

a higher order network or use a compensation network for the woofer, or both. 

 

There are a few areas that might be improved: 

 

1. The tweeter curve is very good, but response is a little bit low in the octave above 

crossover.  At 1.6kHz – the crossover frequency – we are 3dB too low and 

response isn’t flat until over 3kHz.  Also, at only 6dB/octave, it doesn’t fall fast 

enough under the crossover frequency.  Since attenuation is provided, it may be 

safe.  But you will notice that power to the tweeter at 1kHz is only 2dB less than 

power at 2kHz and at 500Hz, it is only about 6dB lower than at 2kHz.  This 

means that the tweeter is vulnerable in high output conditions. 

2. Compensation resistors are very low values, so they must be able to conduct a lot 

of current.  Very high power components are required for this design. 

3. First order networks, by their nature, have a large overlap region.  Their phase 

characteristics are good in and of themselves, but the nature of overlap and of the 

distance between drivers in three-dimensional space makes interference banding 

from diffraction much more problematic, particularly in high output loudspeaker 

systems. 
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Second Order Crossover 

 

 
 

1.6kHz second order crossover 

 

This is a second order crossover with simplified speaker motor loads of 6  and 0.1mH.  

The response curves with idealized loads look great, but even without looking at this 

network with “real world” drivers a serious potential problem presents itself:  Phase 
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Phase response of second order network 

 

As you can clearly see, the woofer and tweeter are 180 degrees out of phase over the 

entire audio bandwidth.  This causes the two diaphragms to move 180 degrees out of 

phase and they will cancel each other through the overlap region. 

 

One solution is to “cross connect” the drivers.  Simply connect the tweeter in opposite 

polarity so that the phase reversal actually affects a phase correction. 
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But now, let’s connect some “real speakers” to our second order crossover. 

 

 
 

Delta 12LF and PSD2002 using second order network 

 

The second order filter is crippled when combined with a highly inductive load, such as 

the Eminence Delta 12LF.  If the woofer has reduced output near the crossover 

frequency, then it may be a good candidate for using a “Pseudo First-Order” filter for the 

woofer – by simply removing the capacitor across the woofer. 
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Delta 12LF and PSD2002 using second order tweeter filter and “Pseudo First-

Order” woofer filter 

 

Simply removing the capacitance from the woofer circuit removes the 14dB peak.  But 

now attenuation is only about 4dB at the crossover frequency. 
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Let’s connect a Zobel RC damper instead. 

 

 

 

Delta 12LF and PSD2002 with second order and RC damper for woofer
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Delta 12LF and PSD2002 with second order and RC damper for woofer 

 

A 7.6  resistor in series with a 40μF capacitor was installed as a Zobel woofer damper.  

This provides a significant improvement over an uncompensated network. 
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Let’s examine the phase of this network. 

 

 
 

Phase response of a second order network with RC damper 

 

The phase response of this system is very similar to the idealized second order network. 

 

Spice model: 

 

! woofer virtual circuit (Eminence Delta 12LF) 

! voice coil reactance 

  R3          6        7        6.06 

  L3          7        9        1.45mH 

! mechanical reactance (45Hz, Q=7.28) 

  C5          9       14        350uF 

  L5          9        14       35mH 

  R5          9        14       72.8 

  ported cabinet (30Hz, Q=1.22) 

  C10         14       0        520uF 

  L10         14       0        52mH 

  R10         14       0        12.2 
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! tweeter virtual circuit (Eminence PSD2002) 

! voice coil reactance 

  R4          1        10       6.6 

  L4          10       11       0.1mH 

! mechanical reactance (on H290) 

  C6          11       12       20uF 

  L6          11       12       2mH 

  R6          11       12       100 

  C7          12       13       10uF 

  L7          12       13       1mH 

  R7          12       13       100 

  C8          13       0        5uF 

  L8          13       0        0.5mH 

  R8          13       0        100 

  R9          11       0        20 

  C9          11       0        50uF 

 

! Crossover Network 

! second order woofer network 

  L2          5        6        1.0mH 

  C4          6        0        10uF 

! second order tweeter network 

  C2          5        1        10uF 

  L1          1        0        1.0mH 

 

! RC damper for woofer 

  R11         6        17       7.6 

  C11         17       0        40uF 
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Now, let’s add the appropriate tweeter compensation.  The Delta 12LF generates about 

97dB@1W/1M at the crossover point.  So the PSD2002 device on the H290 should be 

attenuated 13dB, and top octave compensation employed as well. 

 

So let’s add this compensation to the 

system: 

 

! series/parallel compensation 

  R1          3        1        25 

  R2          1        0        16 

  C1          3        1        0.47uF 

 

 

 

 
 

Delta 12LF and PSD2002 with compensation network 
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This is a fully optimized second order network.  It consists of a 10μF capacitor and a 

1.0mH inductor for each motor.  The woofer circuit also has an RC “Zobel” damper 

consisting of a 40μF capacitor and 7.6  (or 8 ) resistor.  And the tweeter circuit has a 

12dB compensation network consisting of 25 , 16  and 0.47μF components. 

 

The response curve of this network is very good, with the woofer circuit being around 

unity up to 500Hz, where it begins to fall.  Response is –3dB at 1.6kHz and –12dB at 

3.2kHz, so these are “textbook” figures.  And the tweeter circuit is –12dB at 1.6kHz and 

–24dB at 800Hz.    Since the tweeter circuit has been attenuated –12dB, these power 

levels are offset by this amount and the tweeter circuit is acting as expected.  Between 

1.6kHz and 4.8kHz, response only rises 2dB to –10dB, so the tweeter circuit is 

reasonably linear in the midrange.  From 5kHz, response rises at the rate of 

approximately 6dB/octave. 
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Now, let’s look at the network’s phase response. 

 

 
 

Phase response of second order network with compensation 

 

Phase response of this network is easy to understand.  It has the second order phase curve 

from low frequencies through the crossover frequency, and it remains the same as the 

“idealized network” until approximately 3.2kHz, where tweeter compensation begins to 

modify phase exactly as we’ve seen before – maintaining tweeter phase at approximately 

45 degrees. 

 

The most important thing to understand when using this crossover network is that it uses 

contiguous second order filters, so the woofer and the tweeter must be cross-connected.  

Failure to do so will ensure that there is a huge negative spike at 1.6kHz, often as much 

as 30dB – depending on driver placement.  But the solution is simple and effective – Just 

connect the tweeter so that its positive lead is connected to the woofers negative lead in a 

manner that appears to be out of phase.  Then, since the crossover filters shift the woofer 

and tweeter 180 degrees from one another, the crossover region will be additive rather 

than destructive. 
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Since contiguous second order networks create 180-degree phase shifts between motors, 

an obvious solution is to change the topography of at least one of the filters.  Third order 

filters do not modify phase by 90 degrees at the crossover frequency, so the use of 

contiguous filters cannot result in perfect phase alignment either destructive or additive. 

 

 
 

1.6kHz crossover using third order high pass and second order low pass 

 

 

This is the response curve of a crossover 

having second order woofer filter and a 

third order tweeter filter. Most π Speakers 

have a crossover that uses this topology 

for its “base network.” 
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Phase response of crossover having third order tweeter and second order woofer 

 

As you can see, the woofer is in phase at the lowest frequencies, and then falls to being 

90 degrees behind at the crossover frequency, approaching its 180-degree asymptote in 

the stop band.  The tweeter is shifted 270 degrees ahead at the lowest frequencies and 

falls to being in phase as it enters its passband.  Tweeter phase is 135 degrees ahead at the 

crossover frequency. 
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Now let’s include actual speaker motors in the circuit. 

 

 
 

Alpha 12 and PSD2002 using second/third order network 

 

The tweeter circuit of this crossover uses a 

third order slope having values of 

22uF/0.6mH/8uF and the woofer circuit 

has the same 1.0mH/10uF second order 

network as the preceding purely second 

order example did.  But this 

implementation of the filter with an Alpha 

12 woofer doesn’t have nearly the peak 

that the same filter had with the Delta 

12LF.   

 

Compare this response graph with that shown on page 45.  Clearly the peak around 2kHz 

is not as troublesome when using the Alpha 12 as when using the Delta 12LF.  The Delta 

woofer has a peak of 14dB at 2kHz with this filter, but the Alpha only has a 5dB peak 

with the same network.  In both cases, the tweeter has a response dip of approximately 

2dB at this frequency which tends to compensate.  This is significant, since it is above the 

crossover frequency and where the tweeter is expected to be fully on-line. 
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In the former case – the Delta 12 – the peak at 2kHz is of such great amplitude that the 

anomaly is evident.  But in this case – the Alpha 12 - the woofer anomaly is much 

smaller and tends to counteract the tweeter anomaly, making the system relatively linear 

without additional woofer compensation. 

 

The reason that the Alpha 12 has so much less need for woofer compensation than the 

Delta 12LF is that voice coil inductance is quite different.  The Delta 12LF has more 

inductance than the crossover and the Alpha 12 has less.  Specifically, the Delta 12LF 

voice coil is 1.45mH and the Alpha 12 voice coil is 0.8mH.  So a good “rule of thumb” is 

that woofer compensation RC damper circuits may be omitted if voice coil inductance is 

less than crossover inductance. 

 

 
 

Phase response of Alpha 12 and PSD2002 using second/third order network  
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Since the tweeter is 12dB louder than the woofer, we’ll install the same 12dB 

compensation network as was used with the system containing a Delta 12LF and 

PSD2002. 

 

 
 

Alpha 12 and PSD2002 with tweeter compensation network 

 

This is the response of the crossover – second 

order for the woofer and third order for the 

tweeter – and a compensation circuit for the 

tweeter.  The compensation circuit is formed 

using a 25 Ω R1 resistor and 0.47μF C1 

capacitor, and a 16 Ω R2 capacitor. 

 

Notice that now we do not have a dip in 

tweeter response corresponding to the woofer 

peak.  Damping from the tweeter’s compensation circuit has successfully prevented its 

peaking and has also decoupled it from reactive interaction with the woofer circuit. 
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Let’s examine the system using an RC damper for the woofer, to remove woofer peaking 

in the crossover region.  Optimal compensation is found using a 7.35 Ω resistor and a 

24μF capacitor. 

 

 
 

Response with HF compensation for tweeter and RC damper for woofer 
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The response curve is perfect, both for the woofer and the tweeter.  But the values chosen 

for the resistor and capacitor are difficult values to obtain.  So let’s analyze the circuit 

using component values that are more common. 

 

 
 

Response using common values of R and C for RC damper 

 

This is the response curve of the system when the woofer’s RC damper values are 10 Ω 

and 20μF.  The response curve is only slightly different, and is perfectly acceptable.  This 

shows that values between 7.35 Ω and 10 Ω and between 20μF and 24μF provide 

excellent RC dampers for this woofer. 
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Let’s try this type of network on a woofer having a voice coil with high inductive 

reactance.  The JBL 2226 is used with the Eminence PSD2002, and in this application, 

the compensation network is configured for 14dB attenuation.  So the crossover is now 

configured to use a 14dB compensation network comprised of 30 Ω R1, 0.33μF C1 and 

14 Ω R2.  The woofer’s RC damper is removed for this demonstration. 

 

 
 

JBL 2226 and PSD2002 with second order woofer network 

 

As you can see, woofer peaking with a standard second order network is unacceptably 

high at almost 20dB.  This system will need to have an RC damper installed or it will 

need to be run as a “Pseudo First-Order” like was described on page 46.  But since the 

woofer is a 600-watt component, the 

fixed resistor for an RC damper will 

also need to handle several hundred 

watts.  This alone, makes an alternate 

option attractive.  So let’s examine 

the “Pseudo First-Order” approach 

for this system. 
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JBL 2226 and PSD2002 with “Pseudo First-Order” woofer circuit 
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In this case, the woofer rolls off to a maximum of 3dB attenuation at cutoff, but does not 

ever exceed 3dB.  If a woofer has excessive HF cone breakup or does not roll off 

naturally around the desired cutoff frequency, this kind of simple network will not reduce 

HF enough and might not sound very good.  But if the cone flex resonance is 

mechanically damped and well behaved, this configuration sounds very nice. 

 

A conclusion is evident:  RC dampers or “Zobels” are only required on woofer circuits 

that use networks greater than first order.  They are not required on woofers using 

“Pseudo First-Order” filters, and in fact, this is what defines them as such. Also, Zobels 

are rarely required on tweeters. 

 

For higher order networks, a working simplification is that woofer compensation RC 

damper circuits – Zobels - may be omitted if voice coil inductance is less than crossover 

inductance.  
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Component Rating – Power and Voltage 

 

Each of the components in the crossover filters is exposed to the same signal, but each 

divides the signal proportionally as a function of frequency.  So to find the voltage rating 

required of capacitors, and the power or current rating required of resistors and coils is a 

non-trivial task.  Below, we will examine each component and subject it to a swept sine 

wave of 70 volts peak, which is 50 volts RMS and would generate 300 watts across an 8-

ohm resistive load. 

 

The following charts all use the 1K6a010dB and the Zobel network used in the Theater 

Series four π Speaker.  The data shown is accurate for this particular network, but will be 

slightly shifted for other networks because they have slightly different components.  

However, the general trends shown will be the same. 

 

 
 

Voltage across capacitor C4 and Woofer 

 

The voltage across these components, and the power dissipated by them, is somewhat 

easy to imagine.  Under the woofer’s crossover frequency, the voltage is approximately 

equal to the full 70V peak, or 50VRMS.  Naturally, the woofer receives the full 300 watts 

RMS under the crossover frequency, and signal content is rapidly attenuated as we 

approach the crossover frequency. 
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Voltage across inductor L2 

 

The voltage across the coil in the woofer circuit is also easy to guess, having low voltage 

across the device at low frequencies where energy readily passes, and full amplifier 

voltage across the device at higher frequencies.  To calculate current and power, we must 

employ our inductive reactance formula: 

 

XL = 2πFL 

 

And since the most interesting features are the voltage peak around 800Hz and the 

current peak at the crossover frequency, 1600Hz, we should calculate power at these 

frequencies. 

 

At 800Hz, the inductive reactance formula equates to XL = 2π(800)(1x10‾³) or 5 Ω.  At 

1600Hz, inductive reactance is 10 Ω.  Since peak voltage at 800Hz is 33V, peak current 

is 6.6A, making peak power 217 watts.  RMS voltage is 23V, current is 4.6A and power 

is then 108 watts.  At 1600Hz, peak voltage is 28V, current is 2.8A and power is 78.4 

watts.  Clearly then, the maximum is 4.6A (RMS), which is a little over 100 watts RMS. 
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Voltage across inductor L2, if configured as Pseudo First-Order 

 

If the Delta 15 woofer in the Theater Series four π Speaker were to use a Pseudo First-

Order filter, the curve above would represent the voltage across coil L2.  In this 

configuration, C4, C5 and R3 are removed from the circuit.  As you can see the inductor 

acts as little more than a frequency-constant voltage divider above 1kHz. 
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Voltage across woofer damper C5 (Zobel) 

 

The voltage across capacitor C5 is similar to the voltage across C4.  Its maximum value 

is at DC and it falls rapidly.  For a 300 watt RMS loudspeaker, the peak value is 70 volts. 
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Voltage across woofer damper R3 (Zobel) 

 

The graph above shows voltage across the Zobel resistor with respect to frequency.  As 

you can see, maximum voltage is in the octave below crossover, and it peaks around 44 

volts, which is 31 volts RMS.  To solve for power, use the following formula: 

 

P = E²/Z 

 

Therefore, peak power is 44²/8 or 242 watts and RMS power is 31²/8 or 121 watts. 
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Voltage across capacitor C2 
 

The voltage across the initial capacitor in the tweeter’s third order filter shows a 

significant amount of peaking.  This is caused largely by the interaction with inductor L1 

and the fact that there is relatively high load impedance so this part of the filter remains 

underdamped.  This capacitor receives over 100 volts at its peak, which is about 75 volts 

RMS. 

 

I suggest using a capacitor rated greater than 100 volts in this circuit position if used in a 

300-watt loudspeaker system.  Capacitors rated 250V or 400V are preferred, and offer 

further protection against increased peaking in the event that the damping resistor R2 

fails.  If any of the compensation components or the tweeter fails, then damping of the 

filters is significantly reduced and peaking of this device will increase. 

 

You may at first think that there is some error, in that more voltage is present across this 

device than has been put into the system.  And in fact, this is exactly what is happening.  

Energy between the inductance and capacitance in a resonator is alternately charged and 

then dumped back and forth into each other, in a manner that causes the system to appear 

to have more energy than was put into the system.  This is the nature of LC circuits at 

resonance, and in fact, of any system in resonance. 
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Voltage across inductor L1 

 

The signal across L1 is as a person might expect, having no content below the crossover 

frequency and an almost perfectly linear power distribution above the crossover point.  

There is a slight peak at crossover, which is caused by the Q of the filter and set primarily 

by the load resistance R2 in relation to the reactive components L1, C2 and C3.  The 

slight rise in the higher frequencies is caused by HF compensation components R1 and 

C1. 

 

Since inductive reactance increases proportional to frequency, current and power 

dissipated is reduced as frequency goes up.  The highest current and power is within the 

peaking band, which is in the octave above crossover.  Voltage at 2.4kHz reaches its 

highest point, nearly 80 volts peak or 55 volts RMS.  Inductive reactance at this 

frequency is 9 Ω, which then translates to 6.1A and 336 watts RMS. 

 

Like the voltage across C2 at resonance, more power is seemingly dissipated in this 

single coil than has been put into the system.  And again, this is exactly what is 

happening.  Instantaneous power is more than double our input power, peaking at 672 

watts. 

  

So we see that in the octave above crossover, a significant amount of current flows 

through this component. 
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Voltage across resistor R2 (tweeter compensation) 

 

The voltage across the tweeter’s compensation load resistor R2 is almost identical to the 

signal across the crossover filter’s shunt inductor L1.  This is easy to understand, since 

they are only separated by capacitor C3.  But since resistor’s impedance is fixed and does 

not increase as a function of frequency, the current and power dissipated by this device 

will be nearly the same for all frequencies above the crossover frequency.  There is a 

small peak in the octave above crossover because the filter is slightly underdamped. 

 

Maximum voltage is 75V peak or 53VRMS at 2.4kHz.  This translates to 3.3 amps or 175 

WRMS. 
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Voltage across capacitor C3 
 

Based on the power transfer curves of L1 and R2, the small signal across capacitor C3 is 

as expected.  Maximum voltage is less than 30 volts peak, which isn’t even half the 

voltage presented to the system at this frequency.  The only place where energy rises 

across this component is in the octave above crossover, where filter peaking occurs. 
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Voltage across capacitor C1 and resistor R1 (tweeter compensation) 

 

Voltage across these two components is a fairly consistent 55 volts at all frequencies 

above crossover.  At peaking, it reaches a high of around 58 volts, and over the first few 

octaves it dips to around 52 volts.  Peak voltage or 58 volts is 41VRWM and current 

through resistor R1 is then 2.56A, or 105 watts RMS. 
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Final comments about power and voltage ratings 

 

Notice that both capacitors C1 and C3 can be safely implemented with 100-volt 

components and resistors R1 and R2 should each be resistors rated at least 100 watts.  

However, signal distributions are normally weighted heavily in favor of the midbass and 

lower midrange band, with energies normally much lower in the upper midrange and 

treble.  Because of this, and the economics and availability of high power resistors as 

opposed to high voltage capacitors, an adequate compromise may be made. 

 

Results have been found to be good using resistors rated at 25% to 50% of the power 

levels described for the tweeter circuit.  When doing this, two things should be 

understood: 

 

1. Normal signal distribution is such that these levels are adequate, however, a sine 

wave of full power sent solely to the tweeter subsystem may cause de-rated 

resistors to fail, particularly if sent in the peaking frequencies between 1.6kHz and 

3.2kHz. 

 

2. If either resistor R1 or R2 fails, filter peaking between 1.6kHz and 3.2kHz will be 

much higher, placing higher voltage on the capacitors C2 and C3 and causing 

higher current to flow through L1.  So if resistors R1 and R2 are de-rated, then 

capacitors C2 and C3 and inductor L1 should be pro-rated to compensate.  This is 

a fail-over design solution, and is suggested to keep from having one failure 

escalate into many, and possibly damaging the most expensive component in the 

system, which is the tweeter motor itself. 

 

This rating mechanism is a design choice based primarily on economics and the 

availability of components.  It has been found to be more than adequate. 
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Voltage across tweeter 
 

The signal output from the tweeter circuit filters provides the response curve shown 

above, as expressed as a swept voltage.  It may appear to have more amplitude than you 

are used to seeing, since it is expressed as a voltage graph rather than in decibels. 
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Signal across tweeter, expressed in terms of decibels 
 

Expressing the tweeter signal in terms of decibels puts it back into a format that most 

people are familiar with.  This is the same curve as shown on the preceding page, but 

shown having a decibel scale rather than as a voltage. 

 

Having examined all parts of the electrical filters used in loudspeakers, one can make 

much more informed decisions about what is required, and what is not.  The import of 

each component, when shown by quantified example, makes it much easier to assess the 

full value of the crossover filter in the loudspeaker system. 

 

It is clear that it is not enough to consider only the acoustic response of the speaker motor 

and its cabinet, because the electrical components in the crossover provide a filter 

function.  And it is also clear that one cannot simply dismiss a single component as 

having “less in the signal path” when it may impart significant peaking to the system that 

could be removed by a more appropriate network solution. 

 


